Struct NestedRange
pub struct NestedRange<Primary, Secondary>where
Primary: DiscreteRanged,
Secondary: Ranged,{ /* private fields */ }Expand description
A nested coordinate spec which is a discrete coordinate on the top level and for each value in discrete value, there is a secondary coordinate system. And the value is defined as a tuple of primary coordinate value and secondary coordinate value
Trait Implementations§
§impl<P, S> DiscreteRanged for NestedRange<P, S>where
P: DiscreteRanged,
S: DiscreteRanged,
impl<P, S> DiscreteRanged for NestedRange<P, S>where
P: DiscreteRanged,
S: DiscreteRanged,
§fn size(&self) -> usize
fn size(&self) -> usize
Get the number of element in the range
Note: we assume that all the ranged discrete coordinate has finite value Read more
§fn index_of(
&self,
value: &<NestedRange<P, S> as Ranged>::ValueType,
) -> Option<usize>
fn index_of( &self, value: &<NestedRange<P, S> as Ranged>::ValueType, ) -> Option<usize>
Map a value to the index Read more
§fn from_index(
&self,
index: usize,
) -> Option<<NestedRange<P, S> as Ranged>::ValueType>
fn from_index( &self, index: usize, ) -> Option<<NestedRange<P, S> as Ranged>::ValueType>
Reverse map the index to the value Read more
§fn values(&self) -> DiscreteValueIter<'_, Self>where
Self: Sized,
fn values(&self) -> DiscreteValueIter<'_, Self>where
Self: Sized,
Return a iterator that iterates over the all possible values Read more
§impl<P, S> Ranged for NestedRange<P, S>where
P: DiscreteRanged,
S: Ranged,
impl<P, S> Ranged for NestedRange<P, S>where
P: DiscreteRanged,
S: Ranged,
§type FormatOption = NoDefaultFormatting
type FormatOption = NoDefaultFormatting
This marker decides if Plotters default ValueFormatter implementation should be used.
This associated type can be one of the following two types: Read more
§type ValueType = NestedValue<<P as Ranged>::ValueType, <S as Ranged>::ValueType>
type ValueType = NestedValue<<P as Ranged>::ValueType, <S as Ranged>::ValueType>
The type of this value in this range specification
§fn map(
&self,
value: &<NestedRange<P, S> as Ranged>::ValueType,
limit: (i32, i32),
) -> i32
fn map( &self, value: &<NestedRange<P, S> as Ranged>::ValueType, limit: (i32, i32), ) -> i32
This function maps the value to i32, which is the drawing coordinate
§fn key_points<Hint>(
&self,
hint: Hint,
) -> Vec<<NestedRange<P, S> as Ranged>::ValueType>where
Hint: KeyPointHint,
fn key_points<Hint>(
&self,
hint: Hint,
) -> Vec<<NestedRange<P, S> as Ranged>::ValueType>where
Hint: KeyPointHint,
This function gives the key points that we can draw a grid based on this
§impl<PT, ST, P, S> ValueFormatter<NestedValue<PT, ST>> for NestedRange<P, S>where
P: Ranged<ValueType = PT> + DiscreteRanged + ValueFormatter<PT>,
S: Ranged<ValueType = ST> + ValueFormatter<ST>,
impl<PT, ST, P, S> ValueFormatter<NestedValue<PT, ST>> for NestedRange<P, S>where
P: Ranged<ValueType = PT> + DiscreteRanged + ValueFormatter<PT>,
S: Ranged<ValueType = ST> + ValueFormatter<ST>,
§fn format(value: &NestedValue<PT, ST>) -> String
fn format(value: &NestedValue<PT, ST>) -> String
Format the value
§fn format_ext(&self, value: &V) -> String
fn format_ext(&self, value: &V) -> String
Determine how we can format a value in a coordinate system by default
Auto Trait Implementations§
impl<Primary, Secondary> Freeze for NestedRange<Primary, Secondary>where
Primary: Freeze,
impl<Primary, Secondary> RefUnwindSafe for NestedRange<Primary, Secondary>where
Primary: RefUnwindSafe,
Secondary: RefUnwindSafe,
impl<Primary, Secondary> Send for NestedRange<Primary, Secondary>
impl<Primary, Secondary> Sync for NestedRange<Primary, Secondary>
impl<Primary, Secondary> Unpin for NestedRange<Primary, Secondary>
impl<Primary, Secondary> UnwindSafe for NestedRange<Primary, Secondary>where
Primary: UnwindSafe,
Secondary: UnwindSafe,
Blanket Implementations§
§impl<T> AsRangedCoord for Twhere
T: Ranged,
impl<T> AsRangedCoord for Twhere
T: Ranged,
§impl<T> BindKeyPointMethod for Twhere
T: AsRangedCoord,
impl<T> BindKeyPointMethod for Twhere
T: AsRangedCoord,
§fn with_key_point_func<F>(
self,
func: F,
) -> WithKeyPointMethod<Self::CoordDescType>
fn with_key_point_func<F>( self, func: F, ) -> WithKeyPointMethod<Self::CoordDescType>
Bind a existing coordinate spec with a given key points algorithm. See WithKeyPointMethod for more details.
Example: Read more
§impl<T> BindKeyPoints for Twhere
T: AsRangedCoord,
impl<T> BindKeyPoints for Twhere
T: AsRangedCoord,
§fn with_key_points(
self,
points: Vec<Self::Value>,
) -> WithKeyPoints<Self::CoordDescType>
fn with_key_points( self, points: Vec<Self::Value>, ) -> WithKeyPoints<Self::CoordDescType>
Bind a existing coordinate spec with a given key points vector. See WithKeyPoints for more details.
Example: Read more
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> IntoLinspace for Twhere
T: AsRangedCoord,
impl<T> IntoLinspace for Twhere
T: AsRangedCoord,
§impl<R> IntoPartialAxis for Rwhere
R: AsRangedCoord,
impl<R> IntoPartialAxis for Rwhere
R: AsRangedCoord,
§fn partial_axis(
self,
axis_range: Range<<Self::CoordDescType as Ranged>::ValueType>,
) -> PartialAxis<Self::CoordDescType>
fn partial_axis( self, axis_range: Range<<Self::CoordDescType as Ranged>::ValueType>, ) -> PartialAxis<Self::CoordDescType>
Make the partial axis Read more